Researchers frequently report results as relative effects, for example,
“Male flies from selected lines had 50% larger upwind flight ability than male flies from control lines (Control mean: 117.5 cm/s; Selected mean 176.5 cm/s).”
where a relative effect is
\[\begin{equation} 100 \frac{\bar{y}_B - \bar{y}_A}{\bar{y}_A} \end{equation}\] If we are to follow best practices, we should present this effect with a measure of uncertainty, such as a confidence interval. The absolute effect is 59.

ggpubr is a fantastic resource for teaching applied biostats because it makes ggplot a bit easier for students. I’m not super familiar with all that ggpubr can do, but I’m not sure it includes a good “interaction plot” function. Maybe I’m wrong. But if I’m not, here is a simple function to create a gg_interaction plot.
The gg_interaction function returns a ggplot of the modeled means and standard errors and not the raw means and standard errors computed from each group independently.

On page 606, of Lock et al “Statistics: Unlocking the Power of Data”, the authors state in item D “The p-value from the ANOVA table is 0.000 so the model as a whole is effective at predicting grade point average.” Ah no.
library(data.table) library(mvtnorm) rho <- 0.5 n <- 10^5 Sigma <- diag(2) Sigma[1,2] <- Sigma[2,1] <- rho X <- rmvnorm(n, mean=c(0,0), sigma=Sigma) colnames(X) <- c("X1", "X2") beta <- c(0.01, -0.

set up The goal is to plot the measure of something, say O2 levels, against depth (soil or lake), with the measures taken on multiple days
library(ggplot2) library(data.table) First – create fake data depths <- c(0, seq(10,100, by=10)) dates <- c("Jan-18", "Mar-18", "May-18", "Jul-18") x <- expand.grid(date=dates, depth=depths) n <- nrow(x) head(x) ## date depth ## 1 Jan-18 0 ## 2 Mar-18 0 ## 3 May-18 0 ## 4 Jul-18 0 ## 5 Jan-18 10 ## 6 Mar-18 10 X <- model.

[updated to include additional output from MuMIn, BMA, and BAS]
This post is a follow up to my inital post, which was written as as a way for me to pen my mental thoughts on the recent review of “Model averaging in ecology: a review of Bayesian, information‐theoretic and tactical approaches for predictive inference”. It was also written without contacting and discussing the issue with the authors. This post benefits from a series of e-mails with the lead author Carsten Dormann and the last author Florian Hartig.

a shorter argument based on a specific example is here
“What model averaging does not mean is averaging parameter estimates, because parameters in different models have different meanings and should not be averaged, unless you are sure you are in a special case in which it is safe to do so.” – Richard McElreath, p. 196 of the textbook I wish I had learned from Statistical Rethinking
This is an infrequent but persistent criticism of model-averaged coefficients in the applied statistics literature on model averaging.

a longer, more detailed argument is here
The parameter that is averaged “needs to have the same meaning in all “models” for the equations to be straightforwardly interpretable; the coefficient of x1 in a regression of y on x1 is a different beast than the coefficient of x1 in a regression of y on x1 and x2.” – David Draper in a comment on Hoeting et al. 1999.
David Draper suggested this example from the textbook by Freedman, Pisani and Purves.