Some background (due to Sewall Wright’s method of path analysis) Given a generating model: \[\begin{equation} y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \end{equation}\] where \(x_3 = x_1 x_2\); that is, it is an interaction variable. The total effect of \(x_1\) on \(y\) is \(\beta_1 + \frac{\mathrm{COV}(x_1, x_2)}{\mathrm{VAR}(x_1)} \beta_2 + \frac{\mathrm{COV}(x_1, x_3)}{\mathrm{VAR}(x_1)} \beta_3\). If \(x_3\) (the interaction) is missing, its component on the total efffect is added to the coefficient of \(x_1\).

Continue reading

I was googling around and somehow landed on a page that stated “When effect coding is used, statistical power is the same for all regression coefficients of the same size, whether they correspond to main effects or interactions, and irrespective of the order of the interaction”. Really? How could this be? The p-value for an interaction effect is the same regardless of dummy or effects coding, and, with dummy coding (R’s default), the power of the interaction effect is less than that of the coefficients for the main factors when they have the same magnitude, so my intuition said this statement must be wrong.

Continue reading

The post motivated by a tweetorial from Darren Dahly In an experiment, do we adjust for covariates that differ between treatment levels measured pre-experiment (“imbalance” in random assignment), where a difference is inferred from a t-test with p < 0.05? Or do we adjust for all covariates, regardless of differences pre-test? Or do we adjust only for covariates that have sustantial correlation with the outcome? Or do we not adjust at all?

Continue reading

ggpubr is a fantastic resource for teaching applied biostats because it makes ggplot a bit easier for students. I’m not super familiar with all that ggpubr can do, but I’m not sure it includes a good “interaction plot” function. Maybe I’m wrong. But if I’m not, here is a simple function to create a gg_interaction plot. The gg_interaction function returns a ggplot of the modeled means and standard errors and not the raw means and standard errors computed from each group independently.

Continue reading

Author's picture

R doodles. Some ecology. Some physiology. Much fake data.

Thoughts on R, statistical best practices, and teaching applied statistics to Biology majors.

Jeff Walker, Professor of Biological Sciences

University of Southern Maine, Portland, Maine, United States