Update to the earlier post, which was written in response to my own thinking about how to teach stastics to experimental biologists working in fields that are dominated by hypothesis testing instead of estimation. That is, should these researchers learn GLMs or is a t-test on raw or log-transformed data on something like count data good enough – or even superior? My post was written without the benefit of either [Ives](Ives, Anthony R.
1 Why reported effect sizes are inflated 2 Setup 3 Exploration 1 4 Unconditional means, power, and sign error 5 Conditional means 5.1 filter = 0.05 5.2 filter = 0.2 1 Why reported effect sizes are inflated This post is motivated by many discussions in Gelman’s blog but start here
When we estimate an effect1, the estimate will be a little inflated or a little diminished relative to the true effect but the expectation of the effect is the true effect.
load libraries make some fake data make a plot with ggplot ggplot scripts to draw figures like those in the Dynamic Ecology post Paired line plots (a.k.a. “reaction norms”) to visualize Likert data
load libraries library(ggplot2) library(ggpubr) library(data.table) make some fake data set.seed(3) n <- 40 self <- rbinom(n, 5, 0.25) + 1 others <- self + rbinom(n, 3, 0.5) fd <- data.table(id=factor(rep(1:n, 2)), who=factor(rep(c("self", "others"), each=n)), stigma <- c(self, others)) make a plot with ggplot The students are identified by the column “id”.
set up The goal is to plot the measure of something, say O2 levels, against depth (soil or lake), with the measures taken on multiple days
library(ggplot2) library(data.table) First – create fake data depths <- c(0, seq(10,100, by=10)) dates <- c("Jan-18", "Mar-18", "May-18", "Jul-18") x <- expand.grid(date=dates, depth=depths) n <- nrow(x) head(x) ## date depth ## 1 Jan-18 0 ## 2 Mar-18 0 ## 3 May-18 0 ## 4 Jul-18 0 ## 5 Jan-18 10 ## 6 Mar-18 10 X <- model.