On page 606, of Lock et al “Statistics: Unlocking the Power of Data”, the authors state in item D “The p-value from the ANOVA table is 0.000 so the model as a whole is effective at predicting grade point average.” Ah no.

library(data.table)
library(mvtnorm)
rho <- 0.5
n <- 10^5
Sigma <- diag(2)
Sigma[1,2] <- Sigma[2,1] <- rho
X <- rmvnorm(n, mean=c(0,0), sigma=Sigma)
colnames(X) <- c("X1", "X2")
beta <- c(0.01, -0.02)
y <- X%*%beta + rnorm(n)
fit <- lm(y ~ X)
summary(fit)
## 
## Call:
## lm(formula = y ~ X)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9651 -0.6744  0.0001  0.6698  4.3915 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.006111   0.003164  -1.932   0.0534 .  
## XX1          0.006337   0.003644   1.739   0.0820 .  
## XX2         -0.021513   0.003658  -5.881 4.09e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 99997 degrees of freedom
## Multiple R-squared:  0.0003649,  Adjusted R-squared:  0.0003449 
## F-statistic: 18.25 on 2 and 99997 DF,  p-value: 1.191e-08

A p-value is not a measure of the predictive capacity of a model because the p-value is a function of 1) signal, 2) noise (unmodeled error), and 3) sample size while predictive capacity is a function of the signal:noise ratio. If the signal:noise ratio is tiny, the predictive capacity is small but the p-value can be tiny if the sample size is large.